Exercise 65

If f and g are the functions whose graphs are shown, let $u(x)=f(g(x)), v(x)=g(f(x))$, and $w(x)=g(g(x))$. Find each derivative, if it exists. If it does not exist, explain why.
(a) $u^{\prime}(1)$
(b) $v^{\prime}(1)$
(c) $w^{\prime}(1)$

Solution

Take the derivative of $u(x)$.

$$
u^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Evaluate it at $x=1$.

$$
\begin{aligned}
u^{\prime}(1) & =f^{\prime}(g(1)) \cdot g^{\prime}(1) \\
& =f^{\prime}(3) \cdot(-3) \\
& =\left(-\frac{1}{4}\right) \cdot(-3) \\
& =\frac{3}{4}
\end{aligned}
$$

Take the derivative of $v(x)$.

$$
v^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

Evaluate it at $x=1$.

$$
\begin{aligned}
v^{\prime}(1) & =g^{\prime}(f(1)) \cdot f^{\prime}(1) \\
& =g^{\prime}(2) \cdot(2)
\end{aligned}
$$

There's a kink in the graph of g at $x=2$, so $g^{\prime}(2)$ is undefined. $v^{\prime}(1)$ is undefined, too, as a result.

Take the derivative of $w(x)$.

$$
w^{\prime}(x)=g^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Evaluate it at $x=1$.

$$
\begin{aligned}
w^{\prime}(1) & =g^{\prime}(g(1)) \cdot g^{\prime}(1) \\
& =g^{\prime}(3) \cdot(-3) \\
& =\left(\frac{2}{3}\right)(-3) \\
& =-2
\end{aligned}
$$

